RNA Interference of Four Genes in Adult Bactrocera dorsalis by Feeding Their dsRNAs
نویسندگان
چکیده
BACKGROUND RNA interference (RNAi) is a powerful method to inhibit gene expression in a sequence specific manner. Recently silencing the target gene through feeding has been successfully carried out in many insect species. METHODOLOGY/PRINCIPAL FINDINGS Escherichia coli strain HT115 was genetically engineered to express dsRNA targeting genes that encode ribosomal protein Rpl19, V type ATPase D subunit, the fatty acid elongase Noa and a small GTPase Rab11. qRT-PCR showed that mRNA level of four target genes was reduced compared to ds-egfp control by feeding either engineered bacteria or dsRNAs. The maximum down-regulation of each gene varied from 35% to 100%. Tissue specific examination indicated that RNAi could be observed not only in midgut but also in other tissues like the ovary, nervous system and fat body. Silencing of rab11 through ingestion of dsRNA killed 20% of adult flies. Egg production was affected through feeding ds-noa and ds-rab11 compared to ds-egfp group. Adult flies were continuously fed with dsRNA and bacteria expressing dsRNA for 14 days and up-regulations of target genes were observed during this process. The transcripts of noa showed up-regulation compared to ds-egfp control group in four tissues on day 7 after continuous feeding either dsRNA or engineered bacteria. The maximum over-expression is 21 times compared to ds-egfp control group. Up-regulation of rab11 mRNA level could be observed in testes on day 7 after continuous bacteria treatment and in midgut on day 2 after ds-rab11 treatment. This phenomenon could also be observed in rpl19 groups. CONCLUSIONS Our results suggested that it is feasible to silence genes by feeding dsRNA and bacteria expressing dsRNA in Bactrocera dorsalis. Additionally the over-expression of the target gene after continuously feeding dsRNA or bacteria was observed.
منابع مشابه
Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference
RNA interference (RNAi) is a powerful and convenient tool for sequence-specific gene silencing, and it is triggered by double-stranded RNA (dsRNA). RNAi can be easily achieved in many eukaryotes by either injecting or feeding dsRNAs. This mechanism has demonstrated its potential in fundamental research on genetics, medicine and agriculture. However, the possibility that insects might develop re...
متن کاملBactrocera dorsalis male sterilization by targeted RNA interference of spermatogenesis: empowering sterile insect technique programs
RNA interference (RNAi) is a genetic technique which has novel application for sustainable pest control. The Sterile Insect Technique (SIT) uses releases of mass-produced, sterile male insects to out-compete wild males for mates to reduce pest populations. RNAi sterilization of SIT males would have several advantages over radiation sterilization, but to achieve this appropriate target genes mus...
متن کاملComparative Transcriptome Analyses Uncover Key Candidate Genes Mediating Flight Capacity in Bactrocera dorsalis (Hendel) and Bactrocera correcta (Bezzi) (Diptera: Tephritidae)
Flight capacity is important for invasive pests during entry, establishment and spreading. Both Bactroceradorsalis Hendel and Bactroceracorrecta Bezzi are invasive fruit flies but their flight capacities differ. Here, a tethered flight mill test demonstrated that B. dorsalis exhibits a greater flight capacity than B. correcta. RNA-Seq was used to determine the transcriptomic differences associa...
متن کاملEffects of Methyl Eugenol Feeding on Mating Compatibility of Asian Population of Bactrocera dorsalis (Diptera: Tephritidae) with African Population and with B. carambolae
Males of some species included in the Bactrocera dorsalis complex are strongly attracted to methyl eugenol (ME) (1,2-dimethoxy-4-(2-propenyl) benzene), a natural compound occurring in a variety of plant species. ME feeding of males of the B. dorsalis complex is known to enhance their mating competitiveness. Within B. dorsalis, recent studies show that Asian and African populations of B. dorsali...
متن کاملDiscovery of Chemosensory Genes in the Oriental Fruit Fly, Bactrocera dorsalis
The oriental fruit fly, Bactrocera dorsalis, is a devastating fruit fly pest in tropical and sub-tropical countries. Like other insects, this fly uses its chemosensory system to efficiently interact with its environment. However, our understanding of the molecular components comprising B. dorsalis chemosensory system is limited. Using next generation sequencing technologies, we sequenced the tr...
متن کامل